On Regional Business Cycles in Japan:

An Analysis by Prefectural Composite Indexes

Kazumi Asako^a, Takashi Onodera^{b*}, and Atsuko Ueda^c

^a IER, Hitotsubashi University

^b Japan Center for Economic Research

^c Faculty of Political Science & Economics, Waseda University

Objective of the paper

- To characterize regional-specific business cycles compared to the national business cycle.
- To investigate influential factors to affect regional business cycles in the case of Japan.

Analysis method

- Constructing monthly Composite Index (CI) for 47 prefectures over the period of 1985-2010, from four economic indicators. (Normalized to be 100 in 2005 for all prefectures and nationwide.)
- Characterizing disparity of regional business cycles from national business cycle, by matching each prefectural CI sequence to the nationwide CI sequence. (Analysis-A)
- Investigating factors that exert influences on regional economies to explain deviation of prefectural CIs from the national CI. (Analysis-B)

Distribution of disparity measured by the standard deviation of [PCI(t)-JCI(t)] (N=47)

PCI(t): Prefectural CI JCI(t): Nationwide CI

Range: [1.9, 12.7] Average: 5.2 Median of 4.8

Indicated prefectures are those with large disparity from the nationwide CI.

Figure 1. Geographical distribution of regional disparity

Analysis – A: Matching analysis

A-1. Matching method

Matching CI sequences of each prefecture: PCI(t) and Japan: JCI(t) . N=301 (1985-2010).

- (1) Adjusting leads and lags in the timing of business cycle, by Dynamic Programming Matching (DPM).
- (2) Linear transformation to adjust:
 - CI levels and magnitude of variations
 - Time trend
 - Structural change between 1985-2001 and 2002-2010 (long expansion phase in 2002-2008)

$$min \sum_{t=1}^{T} [\varepsilon(t)]^2$$

s.t. $CCI(t) = \beta_0 + \beta_1 \cdot PCI(t) + \beta_2 \cdot t + \varepsilon(t)$ for 1985-2001
 $CCI(t) = \beta_3 + \beta_4 \cdot PCI(t) + \beta_5 \cdot t + \varepsilon(t)$ for 2002-2010

where a sequence of CCI(t), {CCI(1), CCI(2), ...}, represents a rearranged national CI of JCI(t) after adjusting leads and lags of business cycle by DPM.

A-2. Result of matching

(1) Performance of introducing DPM and structural change

Tuote 1. Trimmuni una avenage 11 for 17 presedunes										
	Without struc	ctural change	With structural change							
	Minimum R ²	Average R ²	Minimum R ²	Average R ²						
Without DPM	0.330	0.784	0.706	0.885						
With DPM	0.524	0.902	0.827	0.961						

Table 1. Minimum and average R^2 for 47 prefectures

Improved R^2 : Average: +0.076 \sim 0.118 (by DPM), +0.059 \sim 0.101 (by structural change) Minimum: +0.121 \sim 0.194 (by DPM), +0.303 \sim 0.476 (by structural change)

(2) Time trend

Table 2. S	ummary of time	trend estimate
------------	----------------	----------------

	Average	Madian	Minimayuna	Movimum	No. of prefecture		
_	Average	Median	IVIIIIIIIIIIIIIIIII	Iviaximum	Negative	Positive	
up to Dec 2001	0.000	0.012	-0.160	0.080	19	28	
Jan 2002 and after	0.050	0.037	-0.046	0.194	9	38	

* Positive (Negative): Prefectural CI declines (rises) against national CI.

Before the structural change (-1990s):19 prefectures show better performance than an average.After the structural change (2000s):Only 9 prefectures show better performance than an average.

Figure 5. Time Trend before and after Structural Change

Only 9 prefectures show better performance than national average after the structural change:

Nagoya are: Gifu, Aichi, Mie Wakayama Tokushima Kyushu area: Fukuoka, Oita, Miyazaki, Kagoshima

Analysis – B: Factors to influence deviation of regional economies

B-1. Analysis Method

Panel data analysis (fixed-effects model, dynamic panel model with the Arellano-Bond estimators) *i* for 47 prefectures, *t* for fiscal years of 1990-2008

 $PCI(i,t) - JCI(t) = \beta_0(i) + \beta_1 Pub(i,t) + \beta_2 Loan(i,t) + \beta_3 Export(i,t) + \varepsilon(i,t)$ or $PCI(i,t) - CCI(i,t) = \beta_0(i) + \beta_1 Pub(i,t) + \beta_2 Loan(i,t) + \beta_3 Export(i,t) + \varepsilon(i,t)$ where Pub(i,t): Ratio of public investment amount to gross prefecture product

Loan(i,t): Growth rate of outstanding lending of financial institutions

Export(i,t): Export demand to the machinery industry

Figure 7. Prefectures with high public investment ratio

Average public investment ratio during the sample period Range [3.0%, 14.9%] Average: 8.2% From the highest: 1. Shimane (14.9%) 2. Kochi (13.1%) 3. Akita (12.6%) 4. Okinawa (11.8%) 5. Kagoshima (11.8%) 6. Hokkaido (11.3%) 7. Iwate (10.8%) 8. Tottori (10.8%) *: large CI disparity *: low R2 of matching Public investment rate:

- Reduced by half from 8% in the early 1990s to 4% in the late 2000s.
- Large disparity among prefectures from 3% in Tokyo to 15% in Shimane.

Growth of money lending

- Declined over the period of 1990s, negative in the late 1990s and in the early2000s.
- Recovered in the long expansion phase in 2002-8.

Export demand to the machinery industry

- Approximately 25% in the early 1990s, and increased to nearly 40% in the late 2000s.
- Production rate of the machinery industry distributes from 0.1% to 20% (Shiga & Aichi).

B-2. Estimation result over the sample period

Dependent variable		PCI	(t)-J(CI(t)			PCI(t)-	PCI(t)-CCI(t) (after timing adjustme				
	Fixed-	effects		Dynamic panel			Fixed-e	effects		Dynami	c panel	1
Lag of dependent				0.872	(0.024)	***				0.883	(0.019)	***
Public investment ratio	1.584	(0.095)	***	0.345	(0.079)	***	1.427	(0.084)	***	0.411	(0.055)	***
Growth rate of loans	0.051	(0.016)	***	0.175	(0.034)	***	0.074	(0.014)	***	0.121	(0.024)	***
Machinery export	0.779	(0.297)	***	0.827	(0.248)	***	0.766	(0.265)	***	0.967	(0.171)	***
Constant	-11.724	(1.412)	***	-5.008	(1.132)	***	-10.671	(1.258)	***	-6.052	(0.780)	***
R-squared	0.327						0.343					
Notes: Sample includes 47 prefectures by fiscal year of 1990-2008. Standard errors are in parentheses, and *** ** and												

Table 4: Estimation Result of Panel Data Analysis: 1990-2008

Notes: Sample includes 47 prefectures by fiscal year of 1990-2008. Standard errors are in parentheses, and *******, ******, and ***** indicate 1%, 5%, and 10% significant levels respectively.

- All of public investment ratio, growth rate of lending, and machinery export contribute to push up prefectural CI.

Table 5: Estimation Result of Panel Data Anal	lysis: 1990-2001, and 2001-2008
---	---------------------------------

Dependent: PCI(t)-CCI(t) (afer timing-adjustment)												
	Fixed-e	Fixed-	effects	fects Dynamic panel				Dynamic panel				
Year	1990-	-2001		2002-	002-2008		1990-2001			2002-2008		
Lag of dependent							0.832	(0.046)	***	0.584	(0.028)	***
Public investment ratio	0.310	(0.122)	**	1.118	(0.119)	***	0.218	(0.100)	**	0.546	(0.086)	***
Growth rate of loans	0.031	(0.011)	***	0.016	(0.055)		0.205	(0.036)	***	-0.041	(0.035)	
Machinery export	0.198	(0.479)		1.047	(0.272)	***	1.525	(0.465)	***	1.151	(0.172)	***
Constant	1.554	(1.785)		-10.016	(1.370)	***	-5.379	(1.571)	***	-7.371	(0.941)	***
R-squared	0.022			0.250								
										1.0/		

Notes: Sample includes 47 prefectures by fiscal year. Standard errors are in parentheses, and ***, **, and * indicate 1%, 5%, and 10% significant levels respectively.

- Public investment: positive & significant, more influential in the 2000s than in the 1990s.

- Growth of lending: Positive & significant only in the 1990s.

- Machinery export: Positive & significant only in the 2000s.

Figure 9: R² of fixed-effects model with structural change by prefecture

with large disparity in Figure 1 are indicated. Those in brackets are explained less by panel data analysis.

Summary

- 1. Matching analysis
 - Performance of the matching analysis looks fairly well: $R^2 > 0.82$, average $R^2 = 0.96$

- Deviations of regional business cycle are well explained by leads and lags of the timing, time trend, and the structural change.

- Only 9 prefectures show better performance in time trend than national average in the 2000s

2. Influential factors

- Public investment rate, growth rates of money lending, and export demand contribute to regional economies.

- Across the structural change, public investment becomes more influential, and export demand replaces to money conditions of influential.

3. "Deviated" prefectures

Explained well by both Analysis-A & B: Explained well by Analysis-A, but not B: Explained well by Analysis-B, but not A: Not explained well:

Nagano, Yamanashi and Nara

Wakayama and Miyazaki

Tottori and Shimane

Akita and Okinawa; Iwate, Niigata, and Ehime